ISC SEMESTER 1 EXAMINATION
 SPECIMEN QUESTION PAPER
 MATHEMATICS

Maximum Marks: 80

Time allowed: One and a half hours

(Candidates are allowed additional 15 minutes for only reading the paper.)
The Question paper consists of three sections A, B and C.
Candidates are required to attempt all questions from Section A and all questions either from Section B OR Section C.

The marks intended for questions or parts of questions are given in brackets [].

Select the correct option for each of the following questions.

SECTION A (64 Marks)

(Answer all Questions)

Question 1

The function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=\sin (3 x+2), \forall x \in R$ is:
(a) One-One
(b) Onto
(c) Neither one-one nor onto
(d) one-one but not onto.

Question 2
What will be the Principal value of $\operatorname{Cosec}^{-1}(-\sqrt{2})$?
(a) $\frac{3 \pi}{4}$
(b) $-\frac{\pi}{6}$
(c) $\frac{\pi}{4}$
(d) $-\frac{\pi}{4}$

Question 3
If set A contains 5 elements and set B contains 6 elements, then the number of one-one onto mappings from A to B is:
(a) 720
(b) 120
(c) 0
(d) none of the above.

Question 4

If $\alpha \leq 2 \operatorname{Sin}^{-1} x+\operatorname{Cos}^{-1} x \leq \beta$, then (α, β) is:
(a) $(0, \pi)$
(b) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(c) $\left(-\frac{3 \pi}{2}, \frac{\pi}{2}\right)$
(d) None of the above.

Question 5

Let A be the set of all students of a boy's school. Then the relation R in A is defined by:
$R=\{(a, b): a$ is sister of $b\}$ is
(a) an equivalence relation
(b) symmetric relation
(c) an empty relation
(d) a universal relation

Question 6
$\forall x \in R, \operatorname{Cot}^{-1}(-x)=$
(a) $\pi-\cot ^{-1} x$
(b) $-\tan ^{-1} x$
(c) $-\cot ^{-1} x$
(d) $\pi+\cot ^{-1} x$

Question 7

The value of $\left|\begin{array}{cc}1 & \log _{a} b \\ \log _{b} a & 1\end{array}\right|$ is:
(a) $1-\log a b$
(b) $1-\frac{\log b}{\log a}$
(c) 0
(d) $\log a b-1$

Question 8
From the matrix equation $A B=A C$, it can be concluded that $B=C$ provided:
(a) A is singular matrix
(b) A is non-singular matrix
(c) A is a symmetric matrix
(d) A is a skew symmetric matrix

Question 9

What is the transpose of a column matrix?
(a) Zero matrix
(b) Diagonal matrix
(c) Column matrix
(d) Row matrix

Question 10

What is the multiplicative inverse of matrix A is?
(a) A
(b) A^{2}
(c) $|A|$
(d) $\frac{\operatorname{adj} A}{|A|}$

Question 11

If A and B are two non singular matrices, and $A B$ exists, then $(A B)^{-1}$ is:
(a) $A^{-1} B^{-1}$
(b) $B^{-1} A^{-1}$
(c) $A B$
(d) None of the above

Question 12
[2]
If $\Delta=\left|\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right|$, then $\left|\begin{array}{lll}k a & k b & k c \\ k x & k y & k z \\ k p & k q & k r\end{array}\right|$ is:
(a) Δ
(b) $k \Delta$
(c) $3 k \Delta$
(d) $k^{3} \Delta$

Question 13

If $y=t^{2}$ and $\mathrm{t}=\mathrm{x}+3$ then $\frac{d y}{d x}$ is equal to:
(a) $(x+3)^{2}$
(b) $2(x+3)$
(c) $2 t$
(d) $2(x+3)^{2}$

Question 14

The set of points, where the function $f(x)=x|x|$ is differentiable in:
(a) $(-\infty, \infty)$
(b) $(-\infty, 0) \cup(0, \infty)$
(c) $(0, \infty)$
(d) $[0, \infty)$

Question 15
If $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}$, then $\frac{d y}{d x}$ is equal to:
(a) $\frac{x}{y}$
(b) $-\frac{x}{y}$
(c) $\frac{y}{x}$
(d) $-\frac{y}{x}$

Question 16

The value of $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}$ is equal to:
(a) e
(b) 0
(c) 1
(d) -1

Question 17
[2]
What will be the value of x for the determinant equation $\left|\begin{array}{ccc}3-x & 6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & 3-x\end{array}\right|=0$?
(a) 6
(b) 3
(c) 0
(d) -6

Question 18
Any tangent to the curve $y=3 x^{7}+5 x+3$:
(a) is parallel to x - axis
(b) is parallel to y - axis
(c) makes an acute angle with x - axis
(d) makes on obtuse angle with $y-$ axis

Question 19

The second derivative of $y=x^{3}-5 x^{2}+x$ is:
(a) $10 x-5$
(b) $6 x-10$
(c) $3 \mathrm{x}^{2}-10 \mathrm{x}$
(d) $3 x^{2}-10 x+1$

Question 20
What will be the derivative of $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ with respect to $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$?
(a) -1
(b) 1
(c) 2
(d) 4

Question 21
Ramu purchased 5 pens, 3 bags and 1 instrument box and paid ₹ 16 . From the same shop Venkat purchased 2 pens, 1 bag and 3 instrument boxes and paid $₹ 19$ while Gopi purchased 1 pen, 2 bags and 4 instrument boxes and paid ₹ 25 .
Using the concept of Matrices and Determinants to answer the following questions by choosing the correct option:
(i) If $x, y \& z$ respectively denotes the cost of pen, bag and instrument box then which of the following is true?
(a) $5 x+3 y+z=16$
(b) $2 x+y+3 z=19$
(c) $x+2 y+4 z=25$
(d) All of the above
(ii) If $A=\left(\begin{array}{lll}5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4\end{array}\right),|A|$ is:
(a) -22
(b) 22
(c) 0
(d) 20
(iii) If $A=\left(\begin{array}{lll}5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4\end{array}\right)$ and $\operatorname{adj} A=\left(\begin{array}{ccc}-2 & x & 8 \\ -5 & 19 & -13 \\ 3 & -7 & y\end{array}\right)$ then missing value of x and y are:
(a) $x=-10 \& y=-1$
(b) $x=10 \& y=-1$
(c) $x=-10 \& y=1$
(d) $x=10 \& y=1$
(iv)The cost of one pen is
(a) ₹ 2
(b) ₹ 5
(c) ₹ 1
(d) ₹ 3

Question 22
A Norman window is constructed by adjoining a semicircle to the top of an ordinary rectangular window as shown in the figure given below. The total perimeter of the window is 10 m .

Based on the above information answer the following by choosing the correct option:
(i) If the length and breadth of the rectangle portion of the window is y and x respectively (as shown in the figure above) then the relation between the variable is
(a) $\mathrm{y}=\frac{20+(\pi-2) x}{4}$
(b) $\mathrm{y}=\frac{20-(\pi+2) x}{2}$
(c) $\mathrm{y}=\frac{20-(\pi+4) x}{4}$
(d) $\mathrm{y}=\frac{20-(\pi+2) x}{4}$
(ii) Let A be the area of the Norman window which admits the sunlight. Then A expressed in terms of x is
(a) $\mathrm{A}=5 \mathrm{x}+\frac{\pi}{4} x^{2}-2 x^{2}$
(b) $\mathrm{A}=5 \mathrm{x}+\frac{\pi}{8} x^{2}-\frac{1}{2} x^{2}$
(c) $\mathrm{A}=5 \mathrm{x}-\frac{\pi}{8} x^{2}-\frac{1}{2} x^{2}$
(d) $\mathrm{A}=5 \mathrm{x}-\frac{\pi}{2} x^{2}-\frac{1}{4} x^{2}$
(iii) For the maximum value of A what will be the radius of the semicircle?
(a) $\frac{10}{2+\pi}$
(b) $\frac{10}{\pi-2}$
(c) $\frac{10}{4+\pi}$
(d) $\frac{20}{4-\pi}$
(iv) For maximum value of A , the length of the rectangle represented by y will be equal to:
(a) $\frac{10}{4+\pi}$
(b) $\frac{10}{\pi-2}$
(c) $\frac{20}{4+\pi}$
(d) $\frac{20}{4-\pi}$

Question 23
Consider the mapping $f: A \rightarrow B$ is defined by $f(x)=\frac{x-1}{x-2}$ such that $f(x)$ is one-one onto. Based on the above information, answer the following questions by choosing the correct option.
(i) Domain of $f(x)$ is:
(a) $R-\{2\}$
(b) R
(c) $R-\{1,2\}$
(d) $R-\{0\}$
(ii) Range of $f(x)$ is:
(a) $R-\{2\}$
(b) R
(c) $R-\{1\}$
(d) $R-\{0\}$
(iii) If $g(x)=2 f(x)-1$, then $g(x)$ in terms of x is:
(a) $\frac{x+2}{x}$
(b) $\frac{x+1}{x-2}$
(c) $\frac{x-2}{x}$
(d) $\frac{x}{x-2}$
(iv) A function $f(x)$ is said to be one-one if:
(a) $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
(b) $f\left(-x_{1}\right)=f\left(-x_{2}\right) \Rightarrow-x_{1}=x_{2}$
(c) $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow-x_{1}=x_{2}$
(d) $-f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2}$

SECTION B (16 Marks)

(Answer all Questions)

Question 24

What will be the value of m if the vector $2 \hat{\imath}+m \hat{\jmath}+\hat{k}$ is perpendicular to $2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$?
(a) 7
(b) 0
(c) 1
(d) -1

Question 25

What will be the angle between the two lines $\frac{-x+2}{-2}=\frac{y-1}{7}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{2 y-8}{4}=\frac{z-5}{4}$?
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) 0
(d) π

Question 26

What are the direction ratios of the line passing through two points $(-2,4,5)$ and $(1,2,3)$?
(a) $\langle 1,2,3\rangle$
(b) $\langle-3,2,2\rangle$
(c) $\langle 2,4,5\rangle$
(d) $<0,-1,4>$

The equation of the line passing $(1,-1,0)$ and parallel to the line $\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z+1}{-1}$ is:
(a) $\frac{x-1}{1}=\frac{y+1}{-2}=\frac{z}{-1}$
(b) $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+1}{-3}$
(c) $\frac{x-6}{1}=\frac{y-2}{-2}=\frac{z+1}{3}$
(d) $\frac{x-2}{-2}=\frac{y+2}{-2}=\frac{z+3}{-1}$

Question 28

The given figure shows an air plant holder which is in the shape of a tetrahedron. Let $\mathrm{A}(1,1$, $1), \mathrm{B}(2,1,3), \mathrm{C}(3,2,2) \& \mathrm{D}(3,3,4)$ are the vertices of air plant holder. Based on the above information answer the following questions.
(i) The vector of $\overrightarrow{A B}$ is:
(a) $-\hat{\imath}-2 \hat{k}$
(b) $2 \hat{\imath}+\hat{k}$
(c) $\hat{\imath}+2 \hat{k}$
(d) $-2 \hat{\imath}-\hat{k}$
(ii) The vector of $\overrightarrow{A C}$ is:
(a) $2 \hat{\imath}-\hat{\jmath}-\hat{k}$
(b) $2 \hat{\imath}+\hat{\jmath}+\hat{k}$
(c) $-2 \hat{\imath}-\hat{\jmath}+\hat{k}$
(d) $\hat{\imath}+2 \hat{\jmath}+\hat{k}$
(iii)Area of $\triangle A B C$ is:
(a) $\frac{\sqrt{11}}{2}$ Sq. units
(b) $\frac{\sqrt{14}}{2}$ Sq. units
(c) $\frac{\sqrt{13}}{2}$ Sq. units
(d) $\frac{\sqrt{17}}{2}$ Sq. units
(iv)The unit vector along the $\overrightarrow{A B}$ is:
(a) $\frac{-2 \hat{\imath}-\hat{k}}{\sqrt{5}}$
(b) $\frac{-\hat{\imath}-2 \hat{k}}{\sqrt{5}}$
(c) $\frac{2 \hat{\imath}+\hat{k}}{\sqrt{5}}$
(d) $\frac{\hat{\imath}+2 \hat{k}}{\sqrt{5}}$

SECTION C (16 Marks)

(Answer all Questions)

Question 29
[2]
A company sells its product for ₹ 20 per unit. Fixed costs for the company is ₹ 45,000 and variable costs is estimated to run 25% of total revenue. If x denotes number of units produced, then what will be the total cost function?
(a) $45000+5 x$
(b) $15000+4 x$
(c) $45000+2 x$
(d) $4500+20 x$

Question 30

The demand function for a certain commodity is given by $p=4000-100 x$. What will be the total revenue from the sale of 3 units?
(a) 11,100
(b) 1000
(c) 4500
(d) 2000

Question 31
A company sells x packets of biscuits each day at $₹ 10$ a packet. The cost of manufacturing these packets is ₹ 5 per packet plus a fixed daily overhead cost of ₹ 700 . What will be the profit function?
(a) $6 x-400$
(b) $5 x-700$
(c) $10 x-500$
(d) $5 x-10$

Question 32

The cost function of a firm is given by $(x)=3 x^{2}-2 x+6$. The average cost of the firm at $x=3$ is:
(a) 11
(b) 17
(c) 9
(d) 27

Question 33
The demand function for a certain product is represented by the equation: $p=a x^{2}+b x+c$ where x is the number of units demanded and p is the price per unit.
(i) The revenue function $R(x)$ is:
(a) $a x^{3}+b x^{2}+c x$
(b) $a x+b+\frac{c}{x}$
(c) $a x^{3}+b x^{2}+c x+d$
(d) $2 a x+b$
(ii) The marginal revenue $M R(x)$ is:
(a) $a-\frac{c}{x^{2}}$
(b) $3 a x^{2}+2 b x+c$
(c) $3 a x^{3}+2 b x^{2}+c$
(d) 2 a
(iii) The slope of the marginal revenue is:
(a) 0
(b) $6 a x+2 b$
(c) $\frac{2 c}{x^{3}}$
(d) $9 a x^{2}+4 b x$
(iv) Values of x, for which marginal revenue increases is:
(a) $x>\frac{-b}{3 a}$
(b) $x<\frac{-b}{3 a}$
(c) $x=\frac{-b}{3 a}$
(d) $x \leq \frac{-b}{3 a}$

