ELECTRICITY AND ELECTRONICS (866)

The syllabus is not intended to be used as a teaching syllabus, or to suggest teaching order. It is expected that teachers will wish to develop the subject in their own way.

In the examination, questions will be aimed more at testing the candidates' understanding of fundamental principles, and the application of these principles to problem situations, than to their ability to remember a large number of facts. Some questions will include simple calculations.

An experimental approach to the subject is envisaged and it is assumed that candidates will spend adequate time on individual experimental work. Questions may be set requiring descriptions of experimental procedures. Candidates should also know how to exhibit the results of experiments graphically and how to make deductions from graphs, e.g. from intercepts and gradient in the case of straight-line graphs, deductions by interpolation.

Candidates will be expected to be conversant with SI units.

CLASS XI

There will be two papers in the subject:

Paper I - Theory: 3 hours 80 Marks

Paper II - Project Work 20 Marks

PAPER I (THEORY): 80 Marks

The paper will be divided into two parts.

Part I: will consist of short answer questions. This part will be compulsory.

Part II: will consist of eight questions. Candidates will be required to answer five questions.

1. Introduction to electricity. Structure of atoms; the model atom, nucleus, electrons. Unit of charge; coulomb. Potential difference and electromotive force. Production of electricity by friction, magnetism and chemical action.

2. Electric circuit. Electric current \(I = Qt \). Ampere as rate of flow of charge. Ohm's law as applied to a single resistance \(V/I = R \) and to a whole circuit \(E/I = \text{total } R \).

4. Work, power and energy. Work and energy. The joule. \(E = V/t \) (QV). Unit of power and energy; the watt, the kilowatt, the watt-hour and kilowatt-hour. Use of wattmeter. Calculation of electrical energy and power. Local tariff system.

5. Heating effect of an electric current. Application of heating effect, e.g. heating appliances, filament lamps, electric welding, electric carbon arc, and use of fuses.

6. Chemical effect of an electric current. Electrolytes and non-electrolytes. Elementary phenomena of electrolysis, including the electrolysis of acidified water, and of copper (II) sulphate solution using copper or platinum electrodes. The factors affecting the mass of substance liberated in electrolysis and the measurement of current by voltameter (coulometer). Primary cells; Leclanché cell; polarization; local action. Accumulators; construction and characteristics of lead-acid cell; techniques of testing and charging batteries; care and maintenance.

8. Electromagnetic induction. Phenomenon of electromagnetic induction. Faraday's law; Lenz's law. Induced e.m.f.; a straight conductor cutting flux; \(E = - \text{d}O/\text{dt} \). Self-inductance; \(E = - \text{L}d\text{i}/d\text{r} \). Mutual inductance; the induction coil.

9. Elementary electrostatics. Electric field; \(E = \text{V/d} \). Capacitance and the factors affecting capacitance. Electric flux density; \(D = Q/A \). Permittivity; \(m = D/E \). Energy of charged capacitors in series and in parallel.
10. Alternating current. Generation of an a.c. with a single loop coil. Sinusoidal wave form. Peak values; r.m.s. values (Only ratios will be expected.) Simple a.c. circuits.

PAPER II (PROJECT WORK): 20 Marks

In addition to the syllabus prescribed above, candidates are also required to be assessed in Project Work. All candidates will be required to have completed **two projects** from any topic/s covered in theory.

The Project work will be assessed by the subject teacher.

Mark allocation for each project (10 marks):

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Title of the Project and Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Content</td>
<td>3</td>
</tr>
<tr>
<td>3. Presentation and originality</td>
<td>2</td>
</tr>
<tr>
<td>4. Conclusion/Comments/Summary</td>
<td>1</td>
</tr>
<tr>
<td>5. Viva- Voce</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
</tr>
</tbody>
</table>

List of suggested assignments for Project Work:

1. Use the given apparatus and material viz. resistor, ammeter (0-1.5 A), voltmeter (0-5 V), rheostat, battery, one-way key, sand paper and connecting wires and do the following:
 (i) Assemble an electrical circuit and draw the same.
 (ii) Modify the circuit using two resistors which may be connected in (a) series and (b) in parallel. Draw the same and explain the effect in each case.

2. You are given the following items: rheostat, different kinds of keys, different types of resistances (carbon resistor, wire wound resistance box), different battery eliminators, dc sources (cells, batteries). Prepare a report covering the following:
 (i) Drawing a circuit diagram using rheostat as a potential divider and connecting the same to determine the voltage range provided.
 (ii) Identifying the functions of given keys in the electric circuit and drawing diagrams of each key.
 (iii) Explaining the different types of resistances given.
 (iv) Comparing the connecting wires used in household circuits and those used in the laboratory.
 (v) Differentiating between battery eliminators and dc sources (cells, batteries) and explaining how these are different from car batteries.

3. Assemble a household circuit comprising three bulbs (25W, 40W, 60W, 220V each), three (on/off) switches, a socket, a fuse (1.0 A), flexible connecting wire, main switch and a power source. Calculate the maximum current drawn for three bulbs used in the circuit.

 Draw a circuit diagram consisting of one tube light point, one staircase point using two-way switch, one fan point and one washing machine point.

4. Conduct an extensive study on any Indian /foreign Physicist. Prepare a report discussing their contributions.

Does the current drawn from the cell remain constant? Discuss.

(iii) How is an ammeter and a voltmeter connected in an electrical circuit? Give reason for your answer.
CLASS XII

There will be two papers in the subject:

Paper I - Theory: 3 hours ….. 80 Marks

Paper II - Project Work ….. 20 Marks

PAPER I (THEORY): 80 MARKS

The paper will be divided into two parts.

Part I: will consist of short answer questions. This part will be compulsory.

Part II: will consist of eight questions. Candidates will be required to answer five questions.

1. Distribution of electric power. Idea of a simple distribution system. Mention of the local power system should be made.

 Overhead and underground cables: advantages and uses. D.C and A.C distribution systems: D.C 2 wire system, 3 wire system; AC distribution transformer (3 phase 3 wire system, 3 phase 4 wire system).

2. The D.C. generator and motor. Use of split-ring commutators; constructional features. Shunt series and compound field connections and their characteristics. Starting of D.C. motors. Ideas on back e.m.f.

 Single loop D.C. generator (circuit diagram); parts of a practical generator, lap and wave windings of armature conductors; armature reactions, commutation and period of commutation (Tc), use of interpoles, emf equation

 \[E_g = \frac{\varphi PN}{60} \times \frac{Z}{A} \] (derivation not required); types of generators; Excitation of poles: Self-excited and separately excited; generator construction: shunt, series & compound types; no-load and load characteristics, voltage, current and power equations, critical resistance; causes of failure to build up voltage for generators, applications and simple numericals.

 Motors: Working principle of a DC motor; voltage equation; significance of back emf; D.C motor characteristics. Types of D.C motor constructions-shunt, series and compound; necessity of motor starter and protective devices; power equation applications, uses and numericals.

 A.C. motors (single phase only); idea of rotating magnetic field: split phase start, capacitor start single phase induction motor types. Uses of AC motors.

 Different types of insulations used in cables; Vulcanised Indian Rubber (VIR), Tough Rubber Sheathed (TRS), Poly Vinyl Chloride (PVC).

5. Electrical accessories. Structure and uses of various types of switches, power outlets, lamp holders, ceiling roses and junction boxes. (Familiarity with these is expected - detailed knowledge of structure is not required). Where and how they are used.

 Structure and uses of switches; types: quick break knife switch, main switch, metal clad switch, air break switch, tumbler switch, piano-key switch, finger touch switch; essential qualities of a switch and its position in circuits and layouts; power outlets – Plug and Sockets; lamp holders types: bracket holder, batten holder, pendant holder, angle holder. Ceiling roses; junction boxes. Where and how they are used.
6. Introduction to electronics. Concept of electron flow. Common components employed in electronic circuits; resistors, capacitors and inductors; their structure, types and uses.

Concept of electron flow; passive components employed in electronic circuits. Types of Resistors: wire wound, carbon composition type, variable type (potentiometers, rheostat); colour code. Types of Inductors: air core, iron-core, ferrite core inductors. Types of Capacitors: fixed and variable types. Fixed type: electrolytic capacitor, non-electrolytic (paper capacitors, mica capacitor, ceramic capacitors); variable type - ganged capacitors, their structure, types, voltage equations and uses.

Thermionic diode: construction, operation characteristics of vacuum diodes; A.C and D.C plate resistances, space charge, space charge limiting region.

Semiconductor diodes: bonds in semiconductors, crystal structure of Germanium and Silicon; effect of temperature on semiconductor; concept of hole current; intrinsic and extrinsic semiconductors; doping, n-type, p type semiconductors, energy band diagrams; majority and minority charge carries; properties of p-n junction diode, forward bias and reverse bias diagrams and graphs; volt-ampere characteristics of p-n junction. Definitions of the following: break down voltage, knee voltage, maximum forward current, Peak inverse voltage (PIV), maximum power rating.

Mains transformer; semiconductor diodes as half wave rectifier, full wave rectifier, bridge rectifier. Forward resistance, forward current, reverse current, derivation for: d.c (average current I_{dc}). Root mean square (rms) current (I_{rms}), efficiency of rectification (η); advantages, disadvantages and uses, ripple factors; simple numericals. Voltage doublers: Types of filters: RC filter, choke Input (I/P) filter, π-section filter. Input (I/P) and Output (O/P) graphs. Zener diode for voltage stabilisation, importance of series Resistor in the stabilization circuit, simple numericals. Chokes, bleeder resistors and their functions.

Structure of the vacuum triode, control grid, triode value characteristics, grid cut off voltage. Plate characteristics, mutual characteristics; vacuum tube constants (Triode parameters), relationship between them, simple numericals. Triode as voltage amplifier: bias voltage, cathode resistor and cathode bypass capacitor; current in vacuum, causes of tube failure. Significance of vacuum in tubes.

10. Semiconductor Transistors. The junction transistor: PNP and NPN types. Introduction to various methods of construction; their characteristics including handling procedures and precautions.

Self-explanatory.

Modes of connections: Common-Base (CB), Common-Emitter (CE), Common-Collector (CC) amplifiers: current amplification factors (α, β and γ) and their relationship. Simple numericals on the above.

I/P and O/P characteristics, comparison of the voltage, current and power gain, I/P & O/P resistance (elementary approach only). Phase relationship, bias stabilization, single stage RC coupled amplifier circuit, bias circuit, emitter bypass capacitor, transistor current equation $\Delta I_e = \Delta I_b + \Delta I_c$. Phase reversal in CE mode.

12. The amplifier. A typical amplifier voltage and power amplification. Matching of the power output stage to a speaker.
Voltage Amplifier (RC Coupled) circuit; Power amplifier circuit, impedance matching of the power (O/P) stage to the speaker; advantages, disadvantages, frequency responses (qualitative), Applications. Differences between transistors and tubes.

Characteristics of microphones; types of microphones: carbon, crystal, moving-coil and ribbon types. The common types of gramophone pick-ups. The earphone, crystal and magnetic tapes. The moving-coil loudspeakers; permanent magnet. Electrostatic speaker.

Construction, working, advantages and disadvantages of the above.

Simple circuit diagrams of the above instruments are expected.

Valve voltmeters (VTVM), transistorized voltmeter, signal generator, oscilloscope (CRT); uses of Oscilloscope to measure: (a) the peak value of an ‘ac’ voltage; (b) the frequency of an electrical signal; (c) the time interval (can be used as a clock). Multimeter used as voltmeter, ohmmeter and ammeter.

PAPER II (PROJECT WORK): 20 Marks

In addition to the syllabus prescribed above, candidates are also required to be assessed in Project Work. The Project work will be assessed by the subject teacher and the Visiting Examiner appointed locally and approved by the Council.

All candidates will be required to have completed two projects from any topic/s covered in theory.

Mark allocation for each project (10 marks) *

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Title of the Project and Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Content</td>
<td>3</td>
</tr>
<tr>
<td>3. Presentation and originality</td>
<td>2</td>
</tr>
<tr>
<td>4. Conclusion/Comments/Summary</td>
<td>1</td>
</tr>
<tr>
<td>5. Viva-Voce (Visiting Examiner)</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
</tr>
</tbody>
</table>

List of suggested assignments for Project Work:

1. Electrical accessories (any five), meters and equipment (any three) used in the laboratory (along with precautions to be observed).

Accessories (tools) used in Laboratory: Soldering gun, soldering stand, solder (lead), nose plier, wire stripper, line tester, tag-board, breadboard, general purpose printed circuit board (PCB).

Meters and equipment: DC milliammeter, AC milliammeter, DC Voltmeter, AC voltmeter, Digital Multimeter, Variable DC power supply, Fixed DC power supply, Audio signal generator, Cathode Ray Oscilloscope (CRO).

2. Electrical Cables, their types, uses and specifications. (Any 5 types, with one use and important specifications).

3. Measuring the values of different types of:
 (i) resistors using colour code
 (ii) capacitors using code number.

Writing the procedure to measure the values of resistances, capacitances and inductances using multimeter.

4. Different types of switches (any five), circuit protecting devices and their specifications.

Switches: single-pole, single-throw (SPST), single-pole, double-throw (SPDT), double-pole, single-throw (DPST), double-pole, double-throw (DPDT), Rotary switch, Push Button switch, relay. Miniature circuit breaker (MCB), fuse, fuse holder (show samples), switch action (continuity and discontinuity using multimeter) Specifications; current and voltage ratings.

5. Distribution of electric power (D.C and A.C distribution) using overhead and underground cables along with their advantages and uses.

6. V-I Characteristics of a semiconductor diode (PN), its types and use of any one type of semiconductor diode.

8. Half wave and Full wave rectifier (either centre-tapped or bridge type) with/without filter circuit.

9. Electrical accessories (Power outlets, lamp holders, ceiling roses and junction boxes) their structure and uses.
10. Simple circuitry of lighting and power circuits (domestic use), their layout and limitations, following IEE regulations.

11. Principle, construction and working of DC motor with explanation of any one type of DC motor.

13. Types of microphones (any two) giving their construction, working and uses with diagrams.

14. Types of loudspeakers (any two) giving their construction, working and uses with diagrams.

15. Construction and working principle of power supply including common faults, causes, testing and repair.

16. Multimeters and their types including functions of any one type of multimeter.

17. Transistor Audio Power Amplifiers (any two types), their advantages, disadvantages and uses.

18. Principle, construction, working and uses of Cathode Ray Oscilloscope.

19. Identify a diode, a transistor, a LED, a resistor, an IC (integrated circuit), and a capacitor from a assorted collection of given items and an analog multimeter.

20. Prepare a working model on any one of the following and prepare a brief report highlighting the components used, circuit diagram and a step-by-step procedure:

 (i) Automatic Traffic Signal System using suitable combination of logic gates

 (ii) Basic gates (OR, AND, NOT) using NAND gates

 (iii) FM Radio Receiver

 (iv) Fire Alarm System

 (v) Electronic Lock

 (vi) Stepper Motor Controller

 (vii) Water Level Indicator

 (viii) Mobile Charger

NOTE: No question paper for Project work will be set by the Council.
SAMPLE TABLE FOR PROJECT WORK

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Unique Identification Number (Unique ID) of the candidate</th>
<th>PROJECT 1</th>
<th>PROJECT 2</th>
<th>TOTAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teacher</td>
<td>Visiting Examiner</td>
<td>Average Marks (A + B ÷ 2)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>7 Marks</td>
<td>7 Marks</td>
<td>7 Marks</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For breakup of the 7 Marks to be awarded separately by the Teacher and the Visiting Examiner, please refer to the table giving the criteria for mark allocation for each project.

NOTE: VIVA-VOCE (3 Marks) for each Project is to be conducted only by the Visiting Examiner and should be based on the Project only.